
COMPSCI 389
Introduction to Machine Learning

Models Evaluation
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

1

Jupyter Notebook

• This slide presentation follows the Jupyter notebook:
6 Model Evaluation.ipynb

2

Model Evaluation

• Model Evaluation: Quantifying how effective a model is at making
predictions.

• Note: Different from evaluating an ML algorithm.

3

Review

• Recall from last time:
• We loaded the GPA data
• We split it into X and y data

4

Review (cont.)

• We confirmed that this
algorithm (SciKit-Learn
model) can make
predictions.

• We used a K-D tree to
improve runtimes when
running many queries.

• Next we will evaluate how
“good” the predictions are.

5

Model Evaluation

• Question: What will this output?

6

Perfect Predictions?

• We’ve seemingly achieved perfect predictions with our model!
• Question: Are our predictions genuinely perfect?
• Answer: Not really. We evaluated our model using the training data.
• Evaluating a model on the training data answers the question:
How well does our model predict outcomes for data it has already seen?
• The real question we want to answer is:

How well can our model predict outcomes for new, unseen data?
• This problem arises when evaluating any ML algorithm, not just NN.

7

Train/Test Splits: Idea

• Idea: To accurately assess a model’s performance, we need to
test it on data that it hasn’t seen during training.

• Training Set: A subset of the data used to train the model.
• Testing Set: A different subset of the data used to evaluate the

model.
• Note: The training and testing sets form distinct, non-overlapping

subsets of the available data.

8

Train/Test Split: Sizes

• Question: If we have data_size points (rows), how many should
we use for training and how many for testing?

• Answer: No fixed answer.
• If we use too much for training, our evaluation will have high

variance (it will not be reliable).
• If we use too little for training, the models we learn will not

perform well.
• Some research studies optimizing the train/test split.
• The vast majority of the time people pick a split based on intuition.

• Often 50/50, 60/40, 80/20.

9

Data Splitting

• Question: If we use 𝑋% for training and 100 − 𝑋 % for testing,
what’s something we should watch out for in real applications?

• Answer: The data could be sorted, biasing our evaluation.
• Solution: Randomly select which points go into the training and

testing sets.
• Equivalently, shuffle the data.
• We will use train_test_split from scikit-learn, which does

this for us when shuffle=True.

10

11

What will this output?

Is it a good evaluation of the
accuracy of the predictions?

12

Shuffling preserves the original
row indices so you can look up
the corresponding labels.

Note: When we convert the X data to a
numpy array, it strips these indices.

• The predictions are really good!
• We can predict new applicant GPAs to within a couple

thousandths of a GPA point!

13

Let’s look at some of these super-accurate
predictions:

14

Discard the old indices

What went wrong?

• The predictions aren’t within a
couple thousandths of a GPA
point!

• Question: What went wrong?
• Answer: The average error lets

positive and negative errors
cancel out!

• The average error tells us that on
average we are under-predicting
by a small amount.

15

Evaluation Metrics (Regression)

• Mean (Average) Error: 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

• Rarely what you want.
• Allows positive and negative errors to cancel each other out.

• Mean Squared Error (MSE): 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

• Very common choice.
• Gives a higher weight to larger errors, making it sensitive to outliers. It’s

useful when large errors are particularly undesirable.

• Root Mean Squared Error (RMSE): MSE
• Has the same units as the target variable (unlike MSE).

17

Actual label Predicted label

Evaluation Metrics (Regression, cont.)

• Mean Absolute Error (MAE): 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

• Like MSE, but with less emphasis on outliers.

• R-squared (𝑅2): 1 −
σ𝑖=1

𝑛 𝑦𝑖− ො𝑦𝑖
2

σ𝑖=1
𝑛 𝑦𝑖− ത𝑦 2 , where ത𝑦 =

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 .

• Also called the coefficient of determination.
• Indicates the proportion of the variance of the dependent variable (labels)

that is predictable from the independent variables (predictions).
• Larger is better (maximum possible is one).

• Can be negative if predictions are particularly poor.

18

Evaluation Metrics (Implementation)

19

Nearest Neighbor Re-Evaluation (Code)

20

Nearest Neighbor Re-Evaluation (Results)

• These give a much clearer picture of how accurate the model is.
• Some are easier to interpret than others.
• All can be used to compare the performance of different ML

models.

21

Conclusion

• Use separate data to train and test (evaluate) models.
• When evaluating models, select an appropriate metric
• For regression common metrics include:

• Mean squared error (MSE)
• Root mean squared error (RMSE)
• Mean absolute error (MAE)
• R-squared

22

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Jupyter Notebook
	Slide 3: Model Evaluation
	Slide 4: Review
	Slide 5: Review (cont.)
	Slide 6: Model Evaluation
	Slide 7: Perfect Predictions?
	Slide 8: Train/Test Splits: Idea
	Slide 9: Train/Test Split: Sizes
	Slide 10: Data Splitting
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Let’s look at some of these super-accurate predictions:
	Slide 15: What went wrong?
	Slide 17: Evaluation Metrics (Regression)
	Slide 18: Evaluation Metrics (Regression, cont.)
	Slide 19: Evaluation Metrics (Implementation)
	Slide 20: Nearest Neighbor Re-Evaluation (Code)
	Slide 21: Nearest Neighbor Re-Evaluation (Results)
	Slide 22: Conclusion

