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Jupyter Notebook

• This slide presentation follows the Jupyter notebook:
6 Model Evaluation.ipynb
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Model Evaluation

• Model Evaluation: Quantifying how effective a model is at making 
predictions.

• Note: Different from evaluating an ML algorithm.
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Review

• Recall from last time:
• We loaded the GPA data
• We split it into X and y data 
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Review (cont.)

• We confirmed that this 
algorithm (SciKit-Learn 
model) can make 
predictions.

• We used a K-D tree to 
improve runtimes when 
running many queries.

• Next we will evaluate how 
“good” the predictions are.
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Model Evaluation

• Question: What will this output?
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Perfect Predictions?

• We’ve seemingly achieved perfect predictions with our model!
• Question: Are our predictions genuinely perfect?
• Answer: Not really. We evaluated our model using the training data.
• Evaluating a model on the training data answers the question:
How well does our model predict outcomes for data it has already seen?
• The real question we want to answer is:

How well can our model predict outcomes for new, unseen data?
• This problem arises when evaluating any ML algorithm, not just NN.
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Train/Test Splits: Idea

• Idea: To accurately assess a model’s performance, we need to 
test it on data that it hasn’t seen during training.

• Training Set: A subset of the data used to train the model.
• Testing Set: A different subset of the data used to evaluate the 

model.
• Note: The training and testing sets form distinct, non-overlapping 

subsets of the available data.
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Train/Test Split: Sizes

• Question: If we have data_size points (rows), how many should 
we use for training and how many for testing?

• Answer: No fixed answer.
• If we use too much for training, our evaluation will have high 

variance (it will not be reliable).
• If we use too little for training, the models we learn will not 

perform well.
• Some research studies optimizing the train/test split.
• The vast majority of the time people pick a split based on intuition.

• Often 50/50, 60/40, 80/20.
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Data Splitting

• Question: If we use 𝑋% for training and 100 − 𝑋 % for testing, 
what’s something we should watch out for in real applications?

• Answer: The data could be sorted, biasing our evaluation.
• Solution: Randomly select which points go into the training and 

testing sets.
• Equivalently, shuffle the data.
• We will use train_test_split from scikit-learn, which does 

this for us when shuffle=True.
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What will this output?

Is it a good evaluation of the 
accuracy of the predictions?
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Shuffling preserves the original 
row indices so you can look up 
the corresponding labels.

Note: When we convert the X data to a 
numpy array, it strips these indices.



• The predictions are really good!
• We can predict new applicant GPAs to within a couple 

thousandths of a GPA point!
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Let’s look at some of these super-accurate 
predictions:
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What went wrong?

• The predictions aren’t within a 
couple thousandths of a GPA 
point!

• Question: What went wrong?
• Answer: The average error lets 

positive and negative errors 
cancel out!

• The average error tells us that on 
average we are under-predicting 
by a small amount.
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Evaluation Metrics (Regression)

• Mean (Average) Error: 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

• Rarely what you want.
• Allows positive and negative errors to cancel each other out.

• Mean Squared Error (MSE): 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

2

• Very common choice.
• Gives a higher weight to larger errors, making it sensitive to outliers. It’s 

useful when large errors are particularly undesirable.

• Root Mean Squared Error (RMSE): MSE
• Has the same units as the target variable (unlike MSE).
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Evaluation Metrics (Regression, cont.)

• Mean Absolute Error (MAE): 1
𝑛

σ𝑖=1
𝑛 𝑦𝑖 − ො𝑦𝑖

• Like MSE, but with less emphasis on outliers.

• R-squared (𝑅2): 1 −
σ𝑖=1

𝑛 𝑦𝑖− ො𝑦𝑖
2

σ𝑖=1
𝑛 𝑦𝑖− ത𝑦 2 , where ത𝑦 =

1

𝑛
σ𝑖=1

𝑛 𝑦𝑖  .

• Also called the coefficient of determination.
• Indicates the proportion of the variance of the dependent variable (labels) 

that is predictable from the independent variables (predictions).
• Larger is better (maximum possible is one).

• Can be negative if predictions are particularly poor.
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Evaluation Metrics (Implementation)

19



Nearest Neighbor Re-Evaluation (Code)
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Nearest Neighbor Re-Evaluation (Results)

• These give a much clearer picture of how accurate the model is.
• Some are easier to interpret than others.
• All can be used to compare the performance of different ML 

models.
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Conclusion

• Use separate data to train and test (evaluate) models.
• When evaluating models, select an appropriate metric
• For regression common metrics include:

• Mean squared error (MSE)
• Root mean squared error (RMSE)
• Mean absolute error (MAE)
• R-squared
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