COMPSCI 389
Introduction to Machine Learning

Models Evaluation

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Jupyter Notebook

* This slide presentation follows the Jupyter notebook:
6 Model Evaluation.ilpynb

Model Evaluation

* Model Evaluation: Quantifying how effective a model is at making
predictions.

* Note: Different from evaluating an ML algorithm.

Review

* Recall from last time:
* We loaded the GPA data
* We splititinto X and y data

Load the data set
df = pd.read_csv("https://people.cs.umass.edu/~pthomas/courses/COMPSCI_389 Spring2024/GPA.csv", delimiter=",")
#df = pd.read _csv("data/GPA.csv", delimiter=',")

Display the data set
display(df)

Split into X (inputs) and y (labels)
X = df.iloc[:, :-1]
y = df.iloc[:, -1]

class NearestNeighbor(BaseEstimator):
def fit(self, X, y):
Convert X and y to NumPy arrays if they are DataFrames.
= hhis makes fit compatible with numpy arrays or DataFrames

" if isi (, d.):
Review (cont.) i ssinsancea, o catarrn

if isinstance(y, pd.Series):
y = y.values

° We Conflrmed that thlS #:ei“;o;ed::: ‘:r’iining data and labels.
algorithm (SciKit-Learn self.y_data = y
rrlC)(jGEl) can rT123|(£3 # Create a KDTree for efficient nearest neighbor search
) . self.tree = KDTree(X)
predictions.
return self
* We used a K-D tree to
. . def predict(self, X):
ImprOVG Ful ntlmeS When # Convert X to a NumPy array if it's a DataFrame
. . if isinstance(X, pd.DataFrame):
running many queries. . o bR
® Next we W|ll_ evaluate hOW # Query the tree for the nearest neighbors of all points in X.
py 99 . . # ind will be a 2D array where ind[1i,]j] is the index of the
gOOd the pred|Ct|0nS are. # j'th nearest point to the i'th row in X.

dist, ind = self.tree.query(X, k=1)

Extract the nearest labels.

ind[:,0] are the indices of the nearest neighbors to each
query (each row in x))

return self.y data[ind[:,9]]

Model Evaluation

Train the model on the data
model = NearestNeighbor()
model.fit (X, y)

predictions = model.predict(X)

Compute the average error
average error = (predictions - y).mean()

print("Average Error:", average_error)

* Question: What will this output?

Average Error: 0.0

Perfect Predictions?

* We’ve seemingly achieved perfect predictions with our model!
* Question: Are our predictions genuinely perfect?
* Answer: Not really. We evaluated our model using the training data.
* Evaluating a model on the training data answers the question:
How well does our model predict outcomes for data it has already seen?
* The real question we want to answer is:
How well can our model predict outcomes for new, unseen data?
* This problem arises when evaluating any ML algorithm, not just NN.

Train/Test Splits: Idea

* |[dea: To accurately assess a model’s performance, we need to
test it on data that it hasn’t seen during training.

* Training Set: A subset of the data used to train the model.

* Testing Set: A different subset of the data used to evaluate the
model.

* Note: The training and testing sets form distinct, non-overlapping
subsets of the available data.

Train/Test Split: Sizes

* Question: If we have data_size points (rows), how many should
we use for training and how many for testing?

e Answer: No fixed answer.

* If we use too much for training, our evaluation will have high
variance (it will not be reliable).

* If we use too little for training, the models we learn will not
perform well.

* Some research studies optimizing the train/test split.

* The vast majority of the time people pick a split based on intuition.
* Often 50/50, 60/40, 80/20.

Data Splitting

* Question: If we use X% for training and (100 — X)% for testing,
what’s something we should watch out for in real applications?

* Answer: The data could be sorted, biasing our evaluation.

* Solution: Randomly select which points go into the training and
testing sets.

* Equivalently, shuffle the data.

* Wewilluse train test split from scikit-learn, which does
this for us when shuffle=True.

10

We already loaded X and y, but do it again as a reminder
X = df.iloc[:, :-1]
y = df.iloc[:, -1]

Split the data into training and testing sets (60% train, 4@% test)
X_train, X test, y train, y test = train test split(X, y, test size=0.4, shuffle=True)

Display the training data.
display(X_train)

Train the model on the training data

model.fit(X_train, y_train) What will this output?

Predict on the testing data

predictions = model.predict(X_test) Is it a good evaluation of the

accuracy of the predictions?

Compute the average error on the testing data
average error = (predictions - y_ test).mean()

print("Average Error:"™, average_error)

Note: When we convert the X data to a

Shuffling preserves the original numpy array, it strips these indices.

Display the training data.

display(x _train) if isinstance(X, pd.DataFrame):

row indices so you can look up
the corresponding labels.

X = X.values

physics biology history English geography literature Portuguese math chemistry

34466 | 363.61 38430 44475 481.66 527.76 424.35 364.44 50046 364.59
31701 | 663.20 559.99 626.39 605.85 672.04 595.91 642.66 621.96 617.05
10206 | 75242 595.05 676.76 708.86 677.09 621.36 722.86 727.01 667.81
15650 | 558.19 54546 355.04 547.26 699.05 525.18 43045 685.34 522.53
25664 | 688.19 637.15 53793 59585 646.29 644.87 539.35 603.14 657.16
22251 | 432,60 41541 490.79 466.19 394 .45 453.95 443.17 503.82 39843
36512 | 465.14 637.15 63061 54154 579.64 573.57 481.10 511.14 460.17
5266 | 620.82 692.89 54348 48445 532.28 660.77 49348 650.64 590.50
4233 | 469.73 488.78 521.77 54220 498.94 475.30 475.85 429.04 498.83
6139 | 516.22 54546 607.26 469.30 483.23 525.18 510.13 614.54 588.98

print("Average Error:", average_error)

Average Error: -0.00156026503463803262

* The predictions are really good!

* We can predict new applicant GPAs to within a couple
thousandths of a GPA point!

13

Let’s look at some of these super-accurate
predictions:

The predictions are a numpy array. Convert them to a Series
predictions_series = pd.Series(predictions, name='prediction')
y _test series = pd.Series(y_test, name='label').reset index(drop=True) # We reset the indices in y_ test.

Calculate the difference ‘\\\\\\

difference = predictions_series - y_test_series Discard the old indices

Create a new DataFrame

temp = pd.DataFrame({
‘label’: y test series,
‘prediction’': predictions_series,
‘difference’': difference

1)

print(temp)

14

What went wrong?

* The predictions aren’t within a
couple thousandths of a GPA
point!

* Question: What went wrong?
* Answer: The average error lets

positive and negative errors
cancel out!

* The average error tells us that on
average we are under-predicting
by a small amount.

Average Error: -0.00156265603463803262

P w N R ©

17317
17318
17319
17320
17321

[17322

W ow N W

MOMRW W N

label

.77333
.81667
.16667
.02667
.50333
.55667
.83333
. 77667

.15667
. 50000

prediction

3.
.92667
.16667
. 00000
.92333

w e Nn -

oW oW w N

87000

. 98000
.83333
. 50000
. 73333
. 890006

rows X 3 columns]

difference

.09667
.11000
. 00000
.02667
.42000
.42333
. 00000
.27667

.57666
.61000

15

Evaluation Metrics (Regression)

Actual label Predicted label

P /

* Mean (Average) Error — ? 1Yi — Vi

* Rarely what you Want.
* Allows positive and negative errors to cancel each other out.

 Mean Squared Error (MSE): =™ ., (y; — 9;)*

* Very common choice.

* Gives a higher weight to larger errors, making it sensitive to outliers. It’s
useful when large errors are particularly undesirable.

* Root Mean Squared Error (RMSE): VMSE

 Has the same units as the target variable (unlike MSE).

17

Evaluation Metrics (Regression, cont.)

* Mean Absolute Error (MAE):% iy — il

* Like MSE, but with less emphasis on outliers.

i=1(Vi=91)° _ 1
* R-squared (R?): 1 — ’-1_11(yi—37)2 ,wherey = -3, y; .

* Also called the coefficient of determination.

* Indicates the proportion of the variance of the dependent variable (labels)
that is predictable from the independent variables (predictions).

* Largeris better (maximum possible is one).
* Can be negative if predictions are particularly poor.

18

Evaluation Metrics (Implementation)

def mean_squared_error(predictions, labels):
return np.mean((predictions - labels) ** 2)

def root _mean_squared error(predictions, labels):
return np.sqrt(mean_squared_error(predictions, labels))

def mean_absolute error(predictions, labels):
return np.mean(np.abs(predictions - labels))

def r squared(predictions, labels):
ss_res = np.sum((labels - predictions) ** 2) # ss_res is the "Sum of Squares of Residuals”
ss_tot np.sum((labels - np.mean(labels)) ** 2) # ss_tot is the "Total Sum of Squares”
return 1 - (ss_res / ss_tot)

19

Nearest Neighbor Re-Evaluation (Code)

Compute the average error and other metrics on the testing data
average_error = (predictions - y_ test).mean()

mse = mean_squared_error(predictions, y test)

rmse = root_mean_squared_error(predictions, y test)

mae = mean_absolute error(predictions, y test)

r2 = r_squared(predictions, y test)

Print the metrics

print("Average Error:", average error)
print("Mean Squared Error:", mse)
print("Root Mean Squared Error:", rmse)
print("Mean Absolute Error:", mae)
print("R-squared:", r2)

20

Nearest Neighbor Re-Evaluation (Results)

Average Error: -0.0052997915425470506
Mean Squared Error: 1.1338053245452968

Root Mean Squared Error: 1.0648029510408472
Mean Absolute Error: ©.8201980262036715
R-squared: -0.6899200719482117

* These give a much clearer picture of how accurate the model is.
* Some are easier to interpret than others.

* All can be used to compare the performance of different ML
models.

21

Conclusion

* Use separate data to train and test (evaluate) models.
* When evaluating models, select an appropriate metric

* For regression common metrics include:
* Mean squared error (MSE)
* Root mean squared error (RMSE)
* Mean absolute error (MAE)
* R-squared

22

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Jupyter Notebook
	Slide 3: Model Evaluation
	Slide 4: Review
	Slide 5: Review (cont.)
	Slide 6: Model Evaluation
	Slide 7: Perfect Predictions?
	Slide 8: Train/Test Splits: Idea
	Slide 9: Train/Test Split: Sizes
	Slide 10: Data Splitting
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Let’s look at some of these super-accurate predictions:
	Slide 15: What went wrong?
	Slide 17: Evaluation Metrics (Regression)
	Slide 18: Evaluation Metrics (Regression, cont.)
	Slide 19: Evaluation Metrics (Implementation)
	Slide 20: Nearest Neighbor Re-Evaluation (Code)
	Slide 21: Nearest Neighbor Re-Evaluation (Results)
	Slide 22: Conclusion

